Skip to main content
Log in

Detecting and estimating the time of a single-step change in nonlinear profiles using artificial neural networks

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This effort attempts to study the change point problem in the area of non-linear profiles. A method based on Artificial Neural Networks (ANN) is proposed for estimating the real time of a single step change. The feature vector of the proposed Multi-Layer Perceptron (MLP) is based on Z and control chart statistics for nonlinear profiles. The merits of the proposed estimator are evaluated through simulation experiments. The results show that the estimator provides an accurate estimate of the single step change point in non-linear profiles in the selected case problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amalnick MS, Habibifar N, Hamid M, Bastan M (2019) An intelligent algorithm for final product demand forecasting in pharmaceutical units. Int J Syst Assur Eng Manag 11(2):481–493

    Article  Google Scholar 

  • Amiri A, Jensen WA, Kazemzadeh RB (2010) A case study on monitoring polynomial profiles in the automotive industry. Qual Reliab Eng Int 26(5):509–520

    Article  Google Scholar 

  • Amiri A, Koosha M, Azhdari A, Wang G (2015) Phase I monitoring of generalized linear model-based regression profiles. J Stat Comput Simul 85(14):2839–2859

    Article  MATH  Google Scholar 

  • Atashgar K, Noorossana R (2011) An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. Int J Adv Manuf Technol 52(1–4):407–420

    Article  Google Scholar 

  • Ayoubi, M., & Kazemzadeh, R. B. Estimating sporadic change point in the mean of polynomial profiles. In Industrial Engineering and Operations Management (IEOM), 2015 International Conference on, 2015 (pp. 1–8): IEEE

  • Ayoubi M, Kazemzadeh RB, Noorossana R (2014) Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables. Int J Adv Manuf Technol 75(9–12):1537–1556

    Article  Google Scholar 

  • Ayoubi M, Kazemzadeh RB, Noorossana R (2016) Change point estimation in the mean of multivariate linear profiles with no change type assumption via dynamic linear model. Qual Reliab Eng Int 32(2):403–433

    Article  Google Scholar 

  • Brill, R. A case study for control charting a product quality measure that is a continuous function over time. In Presentation at the 45th Annual Fall Technical Conference, Toronto, Ontario, 2001

  • Eyvazian M, Noorossana R, Saghaei A, Amiri A (2011) Phase II monitoring of multivariate multiple linear regression profiles. Qual Reliab Eng Int 27(3):281–296

    Article  Google Scholar 

  • Fan S-KS, Yao N-C, Chang Y-J, Jen C-H (2011) Statistical monitoring of nonlinear profiles by using piecewise linear approximation. J Process Control 21(8):1217–1229

    Article  Google Scholar 

  • Gharoun, H., Hamid, M., Ghaderi, S. F., & Nasiri, M. M. (2018). Anomaly detection via data mining techniques for aircraft engine operation monitoring. 14th International Industrial Engineering Conference (IIEC 2018),Tehran, Iran.

  • Ghazizadeh A, Mahlooji H, Azar AT, Hamid M, Bastan M (2018) Single-step change point estimation in nonlinear profiles using maximum likelihood estimation. Int J Intell Eng Inform 6(6):527–547

    Google Scholar 

  • Guh RS (2007) On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Qual Reliab Eng Int 23(3):367–385

    Article  Google Scholar 

  • Hwarng HB (2008) Toward identifying the source of mean shifts in multivariate SPC: a neural network approach. Int J Prod Res 46(20):5531–5559

    Article  MATH  Google Scholar 

  • Jensen WA, Birch JB (2009) Profile monitoring via nonlinear mixed models. Qual Technol 41(1):18–34

    Article  Google Scholar 

  • Jeong MK, Lu J-C, Wang N (2006) Wavelet-based SPC procedure for complicated functional data. Int J Prod Res 44(4):729–744

    Article  MATH  Google Scholar 

  • Jin J, Shi J (1998) Feature-preserving data compression of stamping tonnage information using wavelets. Technometrics 41(4):327–339

    Article  Google Scholar 

  • Jin J, Shi J (2001) Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. J Intell Manuf 12(3):257–268

    Article  Google Scholar 

  • Kang L, Albin SL (2000) On-line monitoring when the process yields a linear profile. J Qual Technol 32(4):418–426

    Article  Google Scholar 

  • Kazemzadeh RB, Noorossana R, Amiri A (2008) Phase I monitoring of polynomial profiles. Commun Stat Theory Methods 37(10):1671–1686

    Article  MATH  Google Scholar 

  • Kazemzadeh RB, Noorossana R, Ayoubi M (2015) Change point estimation of multivariate linear profiles under linear drift. Commun Stat Simul Comput 44(6):1570–1599

    Article  MATH  Google Scholar 

  • Kazemzadeha, R. B., Amiri, A., & Mirbeik, H. (2016). Step change point estimation of the first-order autoregressive autocorrelated simple linear profiles. Scientia Iranica. Transaction E, Industrial Engineering, 23(6), 2995.

  • Keramatpour M, Akhavan Niaki ST, Amiri A (2014) Phase-II monitoring of AR (1) autocorrelated polynomial profiles. J Optimization Industrial Eng 7(14):53–59

    Google Scholar 

  • Mahmoud MA, Parker PA, Woodall WH, Hawkins DM (2007) A change point method for linear profile data. Qual Reliab Eng Int 23(2):247–268

    Article  Google Scholar 

  • Maleki MR, Amiri A, Taheriyoun AR (2017) Phase II monitoring of binary profiles in the presence of within-profile autocorrelation based on Markov Model. Commun Statist Simul Comput 46(10):7710–7732

    Article  MATH  Google Scholar 

  • McGinnity K, Chicken E, Pignatiello JJ Jr (2015) Nonparametric changepoint estimation for sequential nonlinear profile monitoring. Qual Reliab Eng Int 31(1):57–73

    Article  Google Scholar 

  • McQuarrie AD (1999) A small-sample correction for the schwartz SIC model selection criterion. Statist Probab Lett 44(1):79–86

    Article  MATH  Google Scholar 

  • Mestek O, Pavlík J, Suchánek M (1994) Multivariate control charts: control charts for calibration curves. Fresenius J Anal Chem 350(6):344–351

    Article  Google Scholar 

  • Miletic I, Quinn S, Dudzic M, Vaculik V, Champagne M (2004) An industrial perspective on implementing on-line applications of multivariate statistics. J Process Control 14(8):821–836

    Article  Google Scholar 

  • Nedumaran G, Pignatiello JJ Jr, Calvin JA (2000) Identifying the time of a step-change with x 2 control charts. Qual Eng 13(2):153–159

    Article  Google Scholar 

  • Niaki STA, Abbasi B (2008) Detection and classification mean-shifts in multi- attribute processes by artificial neural networks. Int J Prod Res 46(11):2945–2963

    Article  MATH  Google Scholar 

  • Noorossana R, Saghaei A, Paynabar K, Abdi S (2009) Identifying the period of a step change in high-yield processes. Qual Reliab Eng Int 25(7):875–883

    Article  Google Scholar 

  • Noorossana R, Saghaei A, Amiri A (2011) Statistical analysis of profile monitoring. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  • Perry MB, Pignatiello JJ Jr (2006) Estimation of the change point of a normal process mean with a linear trend disturbance in SPC. Qual Technol Quant Manag 3(3):325–334

    Article  Google Scholar 

  • Pignatiello JJ Jr, Samuel TR (2001a) Estimation of the change point of a normal process mean in SPC applications. Qual Technol Quant Manage 33(1):82–95

    Google Scholar 

  • Pignatiello JJ Jr, Samuel TR (2001b) Estimation of the change point of a normal process mean in SPC applications. J Qual Technol 33(1):82–95

    Article  Google Scholar 

  • Samuel TR, Pignatjello JJ Jr (1998) Identifying the time of a change in a Poisson rate parameter. Qual Eng 10(4):673–681

    Article  Google Scholar 

  • Samuel TR, Pignatiello JJ Jr, Calvin JA (1998) Identifying the time of a step change in a poisson rate parameter. Qual Eng 10(4):673–681

    Article  Google Scholar 

  • Shadman A, Mahlooji H, Yeh AB, Zou C (2015) A change point method for monitoring generalized linear profiles in phase I. Qual Reliab Eng Int 31(8):1367–1381

    Article  MATH  Google Scholar 

  • Shadman A, Zou C, Mahlooji H, Yeh AB (2017) A change point method for Phase II monitoring of generalized linear profiles. Commun Statist Simul Comput 46(1):559–578

    Article  MATH  Google Scholar 

  • Sharafi A, Aminnayeri M, Amiri A (2012) Identifying the time of step change in binary profiles. Int J Adv Manuf Technol 63(1–4):209–214. https://doi.org/10.1007/s00170-012-3899-4

    Article  Google Scholar 

  • Sharafi A, Aminnayeri M, Amiri A (2013a) An MLE approach for estimating the time of step changes in poisson regression profiles. Scientia Iranica 20(3):855–860

    Google Scholar 

  • Sharafi A, Aminnayeri M, Amiri A, Rasouli M (2013b) Estimating the change point of binary profiles with a linear trend disturbance. Int J Indus Eng 24(2):123–129

    Google Scholar 

  • Sharafi A, Aminnayeri M, Amiri A (2014) Estimating the change point of binary profiles in phase II. Int J Product Qual Manage 14(3):336–351

    Article  Google Scholar 

  • Sogandi F, Amiri A (2014a) Change point estimation of gamma regression profiles with a linear trend disturbance. Int J Qual Eng Technol 4(4):352–368

    Article  Google Scholar 

  • Sogandi F, Amiri A (2014b) Estimating the time of a step change in Gamma regression profiles using MLE approach. Int J Eng Transact b Appl 28(2):224–231

    Google Scholar 

  • Sogandi F, Amiri A (2017) Monotonic change point estimation of generalized linear model-based regression profiles. Commun Statist Simul Comput 46(3):2207–2227

    Article  MATH  Google Scholar 

  • Stover FS, Brill RV (1998) Statistical quality control applied to ion chromatography calibrations. J Chromatogr A 804(1):37–43

    Article  Google Scholar 

  • Vaghefi A, Tajbakhsh SD, Noorossana R (2009) Phase II monitoring of nonlinear profiles. Commun Statist, Theory Methods 38(11):1834–1851

    Article  MATH  Google Scholar 

  • Vakilian F, Amiri A, Sogandi F (2015) Isotonic change point estimation in the AR (1) auto-correlated simple linear profiles. Int J Eng Transact a Basics 28(7):1059–1067

    Google Scholar 

  • Walker E, Wright SP (2002) Comparing Curves Using Additive Models. J Qual Technol 34(1):118–129

    Article  Google Scholar 

  • Williams JD, Woodall WH, Birch JB (2007) Statistical monitoring of nonlinear product and process quality profiles. Qual Reliab Eng Int 23(8):925–941

    Article  Google Scholar 

  • Woodall WH (2007) Current research on profile monitoring. Production 17(3):420–425

    Article  Google Scholar 

  • Yazdanparast R, Hamid M, Azadeh A, Keramati A (2018) An intelligent algorithm for optimization of resource allocation problem by considering human error in an emergency. J Indus Syst Eng 11(1):287–309

    Google Scholar 

  • Zand A, Yazdanshenas N, Amiri A (2013) Change point estimation in phase I monitoring of logistic regression profile. Int J Adv Manuf Technol 67(9–12):2301–2311

    Article  Google Scholar 

  • Zorriassatine F, Tannock JDT (1998) A review of neural networks for statistical process control. J Intell Manuf 9(3):209–224

    Article  Google Scholar 

  • Zou C, Zhang Y, Wang Z (2006) A control chart based on a change point model for monitoring profiles. IIE Transact 38(12):1093–1103

    Article  Google Scholar 

  • Zou C, Tsung F, Wang Z (2007) Monitoring general linear profiles using multivariate exponential weighted moving average schemes. Technometrics 49(4):395–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Sarani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazizadeh, A., Sarani, M., Hamid, M. et al. Detecting and estimating the time of a single-step change in nonlinear profiles using artificial neural networks. Int J Syst Assur Eng Manag 14, 74–86 (2023). https://doi.org/10.1007/s13198-021-01121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01121-y

Keywords

Navigation